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Abstract: - The choice of the Kohonen neural network architecture has a great impact on the convergence of 

trained learning methods. In this paper, we generalize the learning method of the Kohonen network. This 

method optimizes the Kohonen network architecture and conserves the neighborhood notion defined on the 

observation set. To this end, we model the problem of Kohonen network architecture optimization on the terms 

of a mix-integer non linear problem with quadratic constraints. In order to solve the proposed model, we use the 

nues dynamics method. In this context, the continuous Hopfield network is used in the assignment phase. To 

show the advantages of our method, some experiments results are introduced. 
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1 Introduction 
Artificial Neural Network often called as Neural 

Network. It is a computational model or 

mathematical model based on biological neural 

networks. Neural networks are very powerful tool to 

deal with many applications [4]. 

The Kohonen algorithm, which falls within the 

framework of algorithms quantification vector and 

the method of k-means algorithm, is an automatic 

classification method. It is the origin of Self-

Organising Maps (SOM)[14]. This unsupervised 

learning method, of one layer, can be seen as an 

extension of the algorithm of pattern recognition 

and the automatic classification algorithms [2]-[3]. 

As the training stage is very important in the 

SOM performance, the selection of the Kohonen 

network architecture is one of the most important 

aspects of neural network research. The choice of 

the Kohonen neural network architecture has a great 

impact on the convergence of trained learning 

methods. The optimization of the artificial neural 

networks architectures, particularly Kohonen 

networks, is a recent problem [6]-[21]. In this 

context, the first techniques consist of building the 

map in an evolutionary way: allowing, adding 

neurons and deleting some others. The methods that 

proposed in the literature could be broadly classified 

into two categories: the first one fixed a priori the 

size of the map in an evolutionary way; the second 

category allowed the data themselves to choose the 

dimension of the map. The number of artificial 

neurons in the topological map of Kohonen 

randomly often chosen although the latter has a 

great influence on the learning phase of the 

Kohonen network. 

In this paper, we model the problem of the 

optimization of Kohonen network architecture in 

terms of a mix-integer non linear problem with non 

linear constraints. The cost function of the proposed 

model contains two terms: the first one controls the 

geometrical error and constructs the topological 

order; the second term controls the size of the 

topological map. The proposed model optimizes the 

Kohonen network architecture and conserve, at the 

same time, the notion of the neighborhood defined 

on the observation set. Basing on this model, we 

propose a new learning classification method by 

giving a learning rule in the minimization phase. 

Because of its effectiveness in solving the 

optimization problems, the Continuous Hopfield 

Network (CHN) is used in the assignment phase [7]-

[8]. 

This paper is organized as follows: the section II 

describes the algorithm learning Kohonen networks. 

The continuous Hopfield network is described in the 

section III. A new model to optimize the Kohonen 

network architecture is proposed in section IV. The 

section V is devoted to present a new training 

algorithm based on the CHN and the proposed 
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model. Finally, some computational experiments are 

represented. 

 

2 Kohonen Topological Map 
The Self-Organizing Map (SOM), proposed by 

Kohonen, is an unsupervised neural network. It 

projects high-dimensional data onto a low-

dimensional map [14]. Such projection preserves the 

topological relationship defined into the data space; 

therefore, this ordered map can be used as a 

convenient visualization surface for showing 

various features of the training data. For example, 

cluster structures [13]. 

The Kohonnen network has one single layer. It 

called the output layer. The additional input layer 

just distributes the inputs to output layer. The 

neurons of this latter are arranged in a matrix (Fig. 

1). The number of neurons on input layer is equal to 

the dimension of input vector. Kohonen has 

proposed various alternatives for the automatic 

classification [14], and presented the Kohonen 

topological map. The Kohonen model calculates the 

Euclidean distance between input data x  and 

weights w .  

( , ) =g w x w xP P 

 

Fig.1. Kohonen topological map 

    The structure of the Kohonen topological map 

can be defined graph in which the neurons represent 

the nodes. Basing on this structure, Kohonen has 

defined the discrete distance . For any pair of 

neurons ( , )g i , it calculate a discrete distance , 

where ( , )g i  is defined as the length of the shortest 

path between g and i on the graph. For each neuron 

g, this discreet distance can be defined the concept 

of a neighborhood as follows: = { / ( , ) }gV i g i d , 

where d  represents the ray of the neighborhood of 

the neuron g. 

Because of its effeteness in resolution of 

unsupervised learning problems, the Self-

Organizing Map (SOM) becomes a widely used 

method for data visualization. To improve this 

method, many variants and extensions have been 

proposed, including the visualization induced SOM 

(ViSOM) [22]. The ViSOM regularizes the inter-

neuron distances within a neighborhood so as to 

preserve distances on the map. The neighborhood 

function can be interpreted as a channel noise 

model; such a cost function has been discussed in 

the SOM community. In the literature, there are 

some context-aware SOM variants and typical 

examples the SOAN (self organization with 

adaptive neighborhood neural network) and the 

parameter less PLSOM. Both used the current 

mapping error to adjust the internal parameters of 

the adaptation process. In the time-adaptive SOM 

(TASOM) [18], Kohonen has proposed an algorithm 

of self-organization planning space data on a 

discrete area of small size. We take into 

consideration that the map has two dimensions. For 

self-organizing maps, we want to associate with 

each neuron a referent of a vector space data. The 

algorithm self-organizing maps minimizes a cost 

function properly chosen. This cost function must 

reflect the most information of the population space. 

 

3 Continuous Hopfield Network 
Hopfield neural network was introduced by 

Hopfield and Tank [11]-[12]. It was first applied to 

solve combinatorial optimization problems. It has 

been extensively studied, developed and has found 

many applications in many areas, such as pattern 

recognition, design systems [18], and optimization 

[9]. The Continuous Hopfield Networks ( )CHN  

consists of interconnected neurons with a smooth 

sigmoid activation function (usually a hyperbolic 

tangent function). 

The differential equation which governs the 

dynamics of the CHN  as follows:  

= bdy y
Tv I

dt
         (1) 

where y , v  and bI  are, respectively, the vectors 

of neuron states, the outputs and the biases. The 

output function = ( )i iv g y  is a hyperbolic tangent, 

which is bounded below by 0 and above by 1. The 

real values ,i jT  and b

iI  are, respectively, the weight 

of the synaptic connection from the neuron i  to the 

neuron j  and the offset bias of the neuron i . 

For 0 ny IR , a vector e ny IR  is called an 

equilibrium point of the differential equation system 

(1) if: 
et IR , et t ( ) = ey t y . 

Hopfield has introduced the energy function E  

on [0,1]n  which is defined by:  
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0
=1

1 1
( ) = ( ) ( )

2

n v
it b t

i

E v v Tv I v g z dz  

It should be noted that if the energy function (or 

Layapunov function) exists, the equilibrium point 

exists too. Hopfield proved that the symmetry of 

weight matrix is a sufficient condition for the 

existence of Lyapunov function [11]. 

In order to solve combinatorial problems using 

CHN, we will write it in form of the energy function 

( )E v  such that:  

1
( ) = ( )

2

t b tE v v Tv I v     (2) 

 The extremes of this function are among the 

corners of the n-dimensional hypercube = [0,1]nH  

[10]-[17]. 

The philosophy of this approach is that the 

objective function, which characterizes the 

combinatorial problem, is associated with the 

energy function of the network when . In 

This way, the output of the CHN can be represented 

as a solution to combinatorial problem. Unlike a 

discrete network with the signum (hard-limiter) 

activation function, an analog neural network (with 

sigmoid activation function with variable slope) 

permits to avoid sub-optimal local minima. 

Moreover, the analog network is much faster and 

more reliable than the discrete neural network with 

an asynchronous update [1]-[16]. To ensure the 

feasibility of the equilibrium points of the CHN, 

some authors propose two steps (hyperplane 

method) [20]. The first one involves the 

decomposition of the set of the non feasible 

solutions into appropriate subsets, based on the 

constraints of the General Knapsack Quadratic 

Problem. In the second step, the parameters of the 

function are selected using the analytical conditions 

of the equilibrium points. The generalization of the 

energy function and these steps were used to solve 

the Salesman Traveling Problem [20], the Job Shop 

Scheduling Problem [7] the Graph Coloring 

Problem [20] and the Placement of the Electronic 

Circuit Problem [8]. Within these papers, the 

feasibility of the equilibrium points of the CHN is 

always guaranteed. 

4 A new optimization model of the 

Kohonen architecture maps 
The philosophy of the Kohonen method consists of 

projecting the observations set into another space of 

a small dimension and, at the same time, conserve 

the notion of the neighborhood defined on the 

observations set. These conservations are realized 

by using the kernel function. So, the Kohonen 

method is a generalization of the Forgy method [5]. 

Since the objective function minimized by the 

Kohonen method doesn‘t contain any term which 

control the size of the map. The last one contains 

same unnecessary neurons. These neurons have a 

negative effect because they make the learning 

process heavier. Moreover, they make the labeling 

phase more difficult. To overcome this problem, we 

propose, in this paper, a new model that controls the 

size of the map, the geometrical error and conserves 

the notion of neighborhood which is defined in the 

observations set. In this section, we well describe 

the construction steps of our model. The first one 

consists in integrating the special term which 

control the size of the map. The second step gives 

the constraints which ensure the allocation of each 

data to only one neuron. Finally, we give the 

constraints that avoid the allocation of some data to 

removed neurons.  

3.1 Assignment and decision variables 
The relationships between the data and the neurons 

of the map are governed by the following 

assignment variables: 

,

1  .
=

0  else                                                 

th th

i j

if the i data assigned to j neuron
u

  
Where = 1,...,i n , =1,...,j N , n  is the number of 

data and N  is the number of neurons. To control the 

size of the topological map we use the following 

decision variables. 

0,

1, .
=

0, .

th

j th

if the j neuron is used
u

if the j neuron is deleted
 

3.2 Objective function 
This shout out a field of influence around each 

neuron of this map, we define the matrix R which 

called the neighborhood matrix:  

,

( , )
= exp( ), , = 1,...,j l

j l
R j l N

T
 

( , )j l is a distance between the neuron j and the 

neuron l . 

By doing this, we obtain the following cost 

function :  

2

, , 0, 0,

=1 , =1 =1

n N N
i j

i j j l l j

i l j j

u R u x w uP P  

So that the neurons used will be consecutive, to 

avoid, a situation in which the neurons of a 4-class 

map can be constructed by 1, 8, 5 and 3, the 

variables jx  can be penalized with the value jq  in 

the objective function:  

2

, , 0, 0,=1
=1 , =1

( , ) =
n N

Ni j

i j j l l j ji
i l j

f u w u R u x w q uP P  

The ( )j jq  must be an increasing sequence:  

 1 10 < < ... < < < ... <j j Nq q q q  
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3.3 Constraints 
The following family of constraints guarantees that 

the assignment of each example to only one neuron:  

,

=1

= 1, = 1,...,
N

i j

j

u i n                (3) 

When the neuron j  is not used, the variable ,i ju

must take the value 0. To this end, the following 

quadratic constraint must be added as a new 

constraint:  

0, ,

=1 =1

(1 ) = 0
N n

j i j

j i

u u                   (4) 

 This constraint can be called "the transmission 

constraint", because it allows to transmit the 

information from the variables 0, ju  to the variables 

,i ju .  

3.4 Optimization model 
To Tak into consideration the cost function, the 

allocation constraints and the transmission one, we 

obtain the following model which optimizes the 

number of used neurons and conserve, at the same 

time, the notion of neighborhood defined on the 

observations set:  

2

, , 0, 0,

=1 , =1 =1

,

=1

0, ,

=1 =1

,

:

= 1 = 1,...,( )

(1 ) = 0

{0,1} = 0,..., = 1,...,

= 1,...,

n N N
i j

i j j l l j j

i l j j

N

i j

j

N n

j i j

j i

i j

j p

Min u R u x w q u

SC

u i nP

u u

u i n j N

w IR j N

P P

 

 

We define the vectors u  and q  as follow: 

0,1 0, 1,1 1, , ,= ( ,..., , ,..., ,..., ,..., )t

N N i j n Nu u u u u u u  

1= ( ,..., )t N

Nq q q IR  

Let ( *, *)u w  be an optimal solution of the mixed 

integer problem (P), we can prove, theoretically, 

that the introduction of the second term in the 

objective function prevented the number from 

tending to N . Several algorithms have been 

proposed to solve MINLPs: Branch-and-Bound, 

Outer Approximation, /LP NLP -based Branch-and-

Bound, and Branch-and-Cut. 

In this part, a new optimization model is 

introduced. In order to optimize the architecture of 

the topological map (select the optimal number of 

the neurons in the map) and adjust the weights 

matrix (learning), the number of neurons in the map 

can be chosen between certain bounds in data 

function. 

The modeling of a variety of decision problems 

in areas such as the optimization neural architecture 

problems, usually leads to solve non linear mixed-

integer problems. Most of these problems involve 

objective function expressed in the polynomial 

functions form. We can apply the technique of 

linearization or duality method for obtaining 

polynomial mixed-integer problem with constraints. 

The pertinent work indicates that basically two 

approaches are employed in solving polynomial 

mixed-integer problems; namely, exact methods and 

heuristic methods. The present paper falls in the 

latter group, because the linearization procedures 

suffer from the increase of the variables and 

constraints number and the duality methods needs 

extremely high iterative computing for training. In 

this mean, we use the Continuous Hopfield 

Networks (CHN) to solve the proposed mixed-

integer problem (P). 

5 A new training algorithm based on 

the CHN and the proposed model 
In this section, we use the Continuous Hopfield 

Networks (CHN) to solve the problem (P). Since the 

problem (P) is a mixed-integer problem with a 

polynomial objective function, we will solve it 

basing on two steps: 

- Assignment phase: we fix the weight vectors 

and we solve the obtained problem: the 

polynomial assignment problem of integer 

variables. 

- Minimization phase: we fix the assignment 

vectors and we solve the obtained problem: the 

non linear optimization problem with 

continuous variables. 

First, the weights are initialized as follows: 

The vector weights are, randomly, initialized 

from the set =1= [ , ]p min max

m m mDS x x . 

where = { / = 1,..., }max i

m mx max x i n  and

= { / = 1,..., }min i

m mx min x i n , =1,...,m p . 

This choice can be justified by the fact that all 

the observations are in the Data. Moreover, we can 

prove theoretically that the weights associated with 

an optimal solution are in the Data.  

5.1 The continuous Hopfield network 

architectures for the assignment phase  
At the iteration t , we fix the weight vectors obtained 

in the iteration ( 1)t  and we solve the following 

optimization problem with integer variables using 

the CHN:  
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2

, , 0, 0,

=1 , =1 =1

,

=1

0, ,

=1 =1

:

( )
( ) = = 1, = 1,...,

( ) = (1 ) = 0

, = 1,...,

n N N
i j

i j j l l j j

i l j j

N
t

i i j

j

N n
C

j i j

j i

j p

Min u R u x w q u

SC

P
e u u i n

h u u u

w IR j N

P P

 

The feasible solutions set of the problem ( )tP  is: 

( 1)= { {0,1} / ( ) = 0 ( ) = 1, = 1,..., }N n C

F iH u h u and e u i n

- Energy function for the problem ( )tP   

To solve the problem ( )tP  using the CHN a suitable 

energy function must be constructed: 

2

, , 0, 0,=1 , =1 =1

2

=1 =1

0 0, 0, 1 , ,=1 =1 =1

( ) = ( )

1
         ( ) [ ( )] ( )

2

         (1 ) (1 )

n N Ni j

i j j l l j ji l j j

n nC C

i ii i

N N n

j j i j i jj j i

E u u R u x w q u

h u e u e u

u u u u

P P

 
Taking into account that u  is the neuron output 

of the CHN, I is the bias of the network and T  is 

the weights matrix of the connection in the network 

with energy function
1

( )
2

t b tv Tv I v , the weights of 

the connections between the ( 1)n N  neurons are:  

0 ,0 , 0

2

0 , ,0 , ,

, 1 , ,

0, 0

, 1

= 2 .

= = ( 1) .

= ( 2 ) .

= .

=

b d b d

T a b C

d ab ab d b d b d

ab cd a c b d

j b

C

a b

T

T T R x w t

T

I q

I

P P

 (5) 

 Where = 1,...,a n , =1,...,b N , = 1,...,c n  and

=1,...,d N . 

- Parameter setting  
A feasible solution is guaranteed by the CHN from a 

stability no linear analysis of the Hamming 

hypercube corners set: 
( 1)= {0,1}N n

CH . 

The parameter-setting procedure is based on the 

partial derivatives of the generalized energy 

function: 

For =1,...,b N  

2

0, 0, , ,=1 =1

, 0 0,=1

( ) = ( ) / = ( 1)

            (1 2 )

n N T i j

b b i j j bi j

nC

b i b bi

E u E u u u R x w t

q u u

P P

 

For = 1,...,a n  and =1,...,b N  

2

, , 0, ,=1

0, , 1 ,=1

( ) = ( ) / ( 1)

            (1 2 )

N T a b

a b a b l b ll

NC C

b a j a bj

E u E u u u R x w t

u u u

P P

   

 To minimize the objective function, we 

impose the following constraint: 
> 0  

 On the other hand, to penalize the non-

feasibility of the quadratic constraints ( )Ch u  

and the family of linear constraints ( )ie u , it is 

natural to impose the constraint that: 

0C , 0 .  

 So that the instability of the interior points 

Cu H H  is guaranteed, some initial 

conditions are imposed on some parameters: 

0 ,0 0= 2 0b dT , =1,...,b N  and =1,...,d N  

, 1= 2 0ab cdT  for =1,..., , =1,...,a n c n ,     

=1,..., ,b N  and =1,...,d N  

 Given the two types of constraints: 

( ) =1 =1,...,ie u i n  
( ) = 0Ch u

 
 The partition of C FH H  is defined as: 

- 1,1 = { ( ) > 0}CH h u . In this case, there exist some 

observations ax  have been assigned to a non 

used neuron b , this means that 0, = 0bu  and 

, = 1a bu ; consequently, 0, ju  must be increased so 

that the partial derivative 0, ( ) >bE u . To 

guarantee this, and taking into account that ( )bq  

is an increasing sequence, the following 

condition is imposed: 

1

C . 

- 3,1

=1
={ ( ) = 0} { { ( ) >1}}

nC

ii
H h u e u . In this 

way, one observation ax  has been assigned two 

different neurons b  and d  so that , ,= = 1a b a du u . 

As in the previous case, the value ,a bu  will 

decrease if , ( )a bE u .  

Taking into account that ( ) = 0Ch u  and , = 1a bu , 

then 0, = 1bu  in such a way that the following 

constraint is obtained: 
1

2( )t C

NM q  

where 
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1 2

2 ,=1 =1
= { ( 1) }max

n Nt T i j
b j bi j

M R x w tP P  

- 3,2

=1
= { ( ) = 0} { ( ) 1} { { ( ) = 0}}

nC

k ii
H h u e u e u

Where =1,...,k n . So, there is misclassified 

observation ax , this means that a  such that 

, = 0 , = 1,...,a bu b N  and therefore the value ,a bu  

will increase if , ( )a bE u . 

The following constraint is a sufficient condition 

to get , ( )a bE u : 
1

1 1

tM  

where 1 2
,1 ,=1

= { ( 1) }max
Nt T a b

a b b ll
M R x w tP P , 

with =1,...,b N  and = 1,...,a n . 

We can summarize it as following: 

> 0 , 1 0 , > 0 ; 

12 0 , 0 0 ; 

1

C

; 
1

2( )t C

NM q
; 

1

1 1

tM
 

Where 

1 2

1 ,
, =1

1 2

2 ,

=1 =1

= { ( 1) }max

= { ( 1) }max

N
t T a b

b l
a b l

n N
t T i j

j b
b i j

M R x w t

M R x w t

P P

P P (6) 

 Where =1,...,b N  and = 1,...,a n . 

A feasible solution could be the following:  

1 0

1

1 1

1 2

1

1 1

> 0, 0, > 0, = 0

= 2

= (2 , )

=

c t t

N

t

max M M q

M

(7) 

 Given the size of the description space and the 

size of the Kohonen topological map, we can 

determine the parameters by resolving the later 

System (7).We need to fix ,  and compute the 

other parameters.  

5.2 Minimization phase 
 In this step, we fix the variables vector u , and we 

solve the following optimization problem with 

continuous variables:  

2

, , 0, 0,

=1 , =1 =1

,u
=1

0, ,

=1 =1

,

:

= 1(P )

(1 ) = 0

{0,1} = 0,...,

= 1,...,

n N N
i j

i j j l l j j

i l j j

N

i j

j

N n

j i j

j i

i j

j p

Min u R u x w q u

SC

u

u u

u i n

w IR j N

P P

 

As 
2

, , 0, 0,=1 , =1 =1
( ) =

n N Ni j

u i j j l l j ji l j j
I w u R u x w q uP P  is 

a convex quadratic function, the solution of the 

problem ( )uP  is given by the following system: 

( ) / = 0uI w w   

Since it is sufficient to ensure that in every 

iteration, we use only a simple gradient method:  

, , 0, , , 0,

=1 =1 =1 =1

( ) = ( ) / ( )
n N n N

j T i T

j l i j l j l i j l

i l i l

w t R u u x R u u      (8) 

 ( )jw t  represents the gravity center of the class 

j  at the iteration t .  

5.3 Training algorithm 
 Basing on the equations (5), (6), (7), (8), and on the 

algorithm presented in [19], we propose the 

following learning algorithm: 

Input: 

    • n , p , 1,..., nx x ;  

    • [ , ]min maxT T ; the interval of the parameter T;  

    • , , 1 , iterN ;   

Output: Optimal topological map 

Initialization:  

    • N  the size of the map  

    • 1(0),..., (0)Nw w  ; randomly initialized  

    • maxT T , 0t ;  

Repeat  

assignment-decision phase 

   Calculate 1M  and 2M  via the equation (6); 

   Calculate C , ,  and 1  via the equation 

(7); 

   Calculate T  and I  via the equation (5); 

   Calculate the equilibrium points of the CHN 

via the    Euler method; 

minimization Phase; 

  while( <j N ) do 

        if( 0, 0ju ) then 

          update the weight jw  via the equation 

(8); 
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        endIf 

       1t t ; 

      
1

( )

t

Nmin iter
max

max

T
T T

T
; 

      1j j ; 

      done 

Until[ ( < )itert N )OR ( 1( ) ( 1) >j jMin w t w tP P )] 

return (The optimal topological map and final 

weights);  

Algorithm 1: Optimal Kohonen topological map    

This method is based on the well known Nues 

Dynamique method. The Nues Dynamique method 

will converge if the cost fulfils some criteria [5], this 

algorithm ensures that the function of the cost 

converge to a local minimum; what's more, the 

choice of the initial weights has a great effect on the 

convergence of the proposed algorithm. 

6 Computational experiments 
Many different approaches have been used in 

order to classify the three components of data 

Iris[23]. In order to point out the advantages of the 

optimization Kohonen architectures, we apply our 

algorithm to a widely used dataset: Iris dataset for 

classification. It consists of three target classes: Iris 

Setosa, Iris Virginica and Iris Versicolor. Each class 

contains 50 data samples. Each sample has four 

real-valued features: sepal length, sepal width, petal 

length and petal width. Before training, data are 

normalized using the following rule:  

( )
=

( ) ( )

i old i

i new k

k i i

x min x
x

max x min x
 (9) 

 The half of the data samples are used for 

training and 75 items for testing. It should be noted 

that we have used only a small number of the data to 

label the neurons of the map because the last one is 

controlled by the proposed model.  

The parameters , , 0  and jq  of the CHN are 

sitting as follows: 

= 0.001 , 1 = 0.5 , 4=10 , 

0 = 0  and = / ( )jq jn N nj . 

The parameters , C , 1  and  are calculated 

using the equations (6) and (7). 

The outputs of the network CHN are initialized 

as follows: 

, = .( ) / ( ( 1) )i ju b i j N n i j . 

With = 0,..., =1,...,i n and j N  

To cluster data IRIS, the initial size of the map is 

randomly choosing; this size is controlled by the 

term 
0,j jq u  in the objective function of the 

proposed model. Because of this proposed model, 

the number of neurons decreases with time. Finally, 

we show that, the unnecessary units are dropped 

from the map. 
TABLE 1 

 COMPUTING THE OPTIMAL NEURONS OF THE MAP USING 

THE PROPOSED METHOD  

initial size nbr. iteration optimal size 

25 150 10 

36 150 12 

42 130 11 

50 130 10 

64 120 11 

70 120 12 

80 100 13 

90 100 11 

The TABLE 1, present in the mean of the remaining 

neurons associated with different size of maps and 

different iterations. So, the necessary number of 

neurons to clusters data IRIS converges 

approximatively to 11 neurons.  

 
Fig. 2. Necessary units versus iterations 

The numerical results are presented in Fig. 2. For 

example for a map contains 42 neurons, the mean of 

remaining neurons is approximately 11 neurons in 

130 iterations. 

The proposed method completes the Kohonen 

learning method. In fact, our approach releases two 

tasks at the same time: the learning task and the 

optimization one which consists minimizing the size 

of the map. These goals are achieved in three 

phases: Allocation phase, decision phase and the 

minimization one. By this one, we get at the 

convergence only the useless neurons and 

labialization task becomes easy. 

The TABLE 2 presents the obtained clustering 

results of training data. This table shows that our 

method gives the good results, because all the 

training data were correctly classified except two. In 

fact; these elements (misclassified) are from the 

Versicolor class.   
TABLE 2 
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 NUMERICAL RESULTS FOR CLUSTERING THE TRAINING 

DATA  

 Nbr. Tes.D Cr.Class MC Accuracy (%) 

Setosa 25 25 0 100 

Virginica 25 25 0 100 

Versicolor 25 23 2 92 

Total 75 73 2 97.33 

The TABLE 3 shows the numerical results 

obtained from the data classification of the testing 

data. We see that, the important results are obtained 

because we have, only, two misclassified data 

among 75 testing data. These misclassified data 

belong to Versicolor class.    
TABLE 3 

NUMERICAL RESULTS FOR CLUSTERING THE TESTING DATA 

 Nbr. T. D Cr.Class MC Accuracy (%) 

Setosa 25 25 0 100 

Virginica 25 25 0 100 

Versicolor 25 23 2 92 

Total 75 73 2 97.33 

‐ Nbr. T. D. is Number of Training Data,  

‐ Cr.Class. is Correctly Classified.  

‐ MC.  is Misclassified 

The weights initialization of the Kohonen 

algorithm and the fixation of the neural architecture 

by the proposed method demonstrate the important 

impact: The final partitioning was done by the 

following procedure. 

- Weights initialization of the Kohonen 

algorithm and the fixation of the neural 

architecture; 

- A SOM was trained using the sequential 

training algorithm for each example of training 

data.  
TABLE 4 

COMPARISON FOR IRIS DATA CLASSIFICATION 

‐ It : Number of iterations;  

‐ M.T. : Misclassified for training set;  

‐ M.TS. : Misclassified for testing set;  

‐ A.T. : Accuracy for training set;  

‐ A.TS. : Accuracy for testing set.  

‐ P.M. is the Proposed Method  
 From the TABLE 4, it is clear that our method 

gives the good results, in comparisons with the other 

ones, RBF, EBP and SVM. In one hand, SVM 

method gives a less time than our approach, but our 

approach gives a good classification (4 

misclassified). In the other hand, EBP method gives 

product the good classification than the other 

method; but our method gives less time than EBP 

(9.5 seconds). These good results can be argued as 

follows: 

- The first term of the objective function of our 

proposed model controls the geometric error on 

a given classification. 

- To facilitate the task of labialization the kernel 

matrix ensures the conservation of the topology 

of data space and that the creation of a field of 

influence of each neuron. 

- The second term of the objective function keeps 

only the neurons that represent the reel density 

of data. 

- The fastness of our method is the using of 

Hopfield network in the allocation phase. 

In addition, the number of hidden neurons must 

be decided before training in both EBP and RBF 

neural networks. Different number of hidden 

neurons results in different training time and 

training accuracy. It is still a difficult task to 

determine the number of hidden neurons in advance. 

The experiments indicated that clustering by the 

proposed method is computationally effective 

approach. 

 

7 Conclusion 
In this paper, we have modeled the selection of the 

Kohonen architecture in terms of a mixed-integer 

optimization problem with non linear constraints. 

This new model optimizes the Kohonen network 

architecture and, at the same time, conserves the 

notion of the neighborhood defined on the 

observation set. Basing on this model, we have 

proposed a learning classification method by giving 

a learning rule in the minimization phase; because 

of its effectiveness in solving the optimization 

problems, the Continuous Hopfield Network (CHN) 

is used in the assignment-decision phase. In 

comparison with the classical learning method of 

Kohonen, the proposed method is able to avoid the 

unusless neurons in the map. The experimental work 

for classification problems has illustrated the 

advantages of proposed approach, especially in the 

quality of the classification and in the optimization 

of the architecture map. In order to point out the 

advantages of the proposed approach, we have 

applied the proposed algorithm to a widely used 

dataset, Iris dataset for classification. In this respect, 

the proposed method produces a good classification, 

in reasonable time, in comparison with the recent 

methods like EBF, RBF and SVM. In the future, we 

will use the proposed method for the image 

compression and speech processing. 

 

Methods CPU(s) It. M.T. M.TS. A.T. A.TS. 

EBP 39.98 500 3 2 96 97.3 

EBP 68.629 800 2 1 97.3 98.6 

RBF 16.84 85 4 4 94.6 94.6 

RBF 19.81 111 4 2 96 97.3 

SVM 8.743 5000 3 5 94.6 93.3 

P.M. 9.5 150 2 2 97.3 97.3 

WSEAS TRANSACTIONS on COMPUTERS M. Ettaouil, M. Lazaar, K. Elmoutaouakil, K. Haddouch

E-ISSN: 2224-2872 162 Issue 4, Volume 12, April 2013



References: 

[1] S.V.B. Aiyer, M. Niranjan, and F. Fallside, ―A 

theoretical investigation into the performance 

of the Hopfield model‖, IEEE Trans. Neural 

Networks, Vol. 1, pp. 204-215, 1990.  

[2] N. Arous, N. Ellouze, ―Study of Specific 

Genetic Operators for Learning Kohonen Maps 

in Function of Initial Conditions‖, International 

Review on Computers and Software 

(IRECOS), Vol. 3. n. 6, pp. 610 – 617, 

November 2008. 

[3] W. Bellil, C. Ben Amar, A. M. Alimi, ―Multi 

Library Wavelet Neural Network for Lossless 

Image Compression‖, International Review on 

Computers and Software (IRECOS), Vol. 2. n. 

5, pp. 520 – 526, September 2007. 

[4] Bouktir, T., Slimani, L., Optimal power flow of 

the Algerian Electrical Network using genetic 

algorithms, Wseas Transactions On Circuits 

And Systems, Vol. 3, Issue 6, 2004, pp. 1478-

1482. 

[5] G. Dryfus, J.M.Martinez, M.Samuelides, 

M.B.Gordan, ―Réseaux de neurones 

Méthodologie et applications‖. EYRLLES, SC 

924, 2000.  

[6] M. Ettaouil, Y.Ghanou, K. Elmoutaouakil, M. 

Lazaar, ―A New Architecture Optimization 

Model for the Kohonen Networks and 

Clustering‖, Journal of Advanced Research in 

Computer Science (JARCS), Vol. 3, Issue 1, 

pp. 14 - 32, 2011.  

[7] M. Ettaouil, K. Elmoutaouakil and Y. Ghanou, 

―The Continuous Hopfield Networks (CHN) 

for the Placement of the Electronic Circuits 

Problem‖, Wseas Transactions On Computer, 

Issue 12, Volume 8, 2009. 

[8] M. Ettaouil, K. Elmoutaouakil, Y.Ghanou, 

―The continuous hopfield networks (CHN) for 

the placement of the electronic circuits 

problem‖, Wseas Transactions on 

Computer,Vol. 8 Issue 12, December 2009. 

[9] M. Ettaouil and C. Loqman, ‗Constraint 

satisfaction problem solved by semi definite 

relaxation‘, Wseas Trasactions On Computer, 

Issue 7, Volume 7, 951-961, 2008. 

[10] D. J. Evansi and M. N. Sulaiman, ―Solving 

optimization problems using neucomp-a neural 

network compiler‖, International Journal of 

Computer Mathematics, Vol. 62, pp. 1-21, 

1996. 

[11] A. Ghosh, S.K. Pal, ―Object Background 

classification using Hopfield type neural 

networks‖, International Journal of Pattern 

Recognition and artificial Intelligence, pp. 989-

1008, 1992. 

[12] J.J. Hopfield, ―Neurons with graded response 

have collective computational properties like 

those of two-states neurons‖, proceedings of 

the National academy of sciences of the USA 

81, pp. 3088-3092, 1984.  

[13] J.J. Hopfield, D.W. Tank, ―Neural computation 

of decisions in optimization problems‖, 

Biological Cybernetics 52, pp. 1-25, 1985.  

[14] C. C. Hsu, ―Generalizing Self-Organizing Map 

for Categorical Data‖, IEEE Transactions on 

neural networks, Vol. 17, No. 2,  pp. 294-304, 

2006.  

[15] T. Kohonen. ―Self Organizing Maps‖. Springer, 

3e edition, 2001.  

[16] B.W. Lee, B.J. Shen, ―Hardware annealing in 

electronic neural networks‖, IEEE Trans, Vol. 

1, pp. 134 -137, 1990.  

[17] N.M. Nasrabadi and C.Y. Choo, ―Hopfield 

network for stereo vision correspondence‖, 

New York:Marcel Dekker, 1994.  

[18] H. Shah-Hosseini, R. Safabakhsh. ―TASOM: 

The Time Adaptive Self-Organizing Map‖. 

International Conference on Information 

Technology: Coding and Computing 

(ITCC'00), 422, 2000.  

[19] P.M. Talaván and J. Yàñez, ―A continuous 

Hpfield network equilibrium points algorithm‖. 

Computers and operations research, Vol. 32, 

pp. 2179-2196, 2005.  

[20] P.M. Talaván, J. Yàñez, ―The generalized 

quadratic knapsack problem.A neuronal 

network approach‖, Neural Networks, Vol. 19, 

pp. 416-428, 2006. 

[21] D. Wang. N.S. Chaudhari, ―A constructive 

unsupervised learning algorithm for Boolean 

neural networks based on multi-level 

geometrical expansion‖, Neurocomputing, 57C: 

pp. 455-461, 2004. 

[22] H. Yin, ―ViSOM—A Novel Method for 

Multivariate Data Projection and Structure 

Visualization‖, IEEE Transactions on Neural 

Networks, Vol. 13, pp. 237-243, 2002.  

[23] www.ics.uci.edu/mlearn/MLRepository.html. 

WSEAS TRANSACTIONS on COMPUTERS M. Ettaouil, M. Lazaar, K. Elmoutaouakil, K. Haddouch

E-ISSN: 2224-2872 163 Issue 4, Volume 12, April 2013

http://www.ics.uci.edu/mlearn/MLRepository.html



